
Information Processing and Management 61 (2024) 103816

Available online 19 June 2024
0306-4573/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

KGRED: Knowledge-graph-based rule discovery for weakly 
supervised data labeling 

Wenjun Hou a, Liang Hong a,*, Ziyi Zhu b 

a School of Information Management, Wuhan University, Wuhan 430072, China 
b School of Computer, Wuhan University, Wuhan 430072, China   

A R T I C L E  I N F O   

Keywords: 
Data labeling 
Weakly supervised learning 
Rule discovery 
Rule knowledge graph 

A B S T R A C T   

In weakly supervised learning, labeling rules can automatically label data to train models. 
However, due to insufficient prior knowledge, rule discovery often suffers from semantic drift. 
Since misclassified rules are generated from wrongly matched sentences, the sentences matched 
by rules shift from the target labels to other labels. It is worth noting that rules do not exist in 
isolation. The multi-dimensional semantic associations among rules can impose semantic con
straints for rule generation, as well as enrich the semantic information of rules for rule matching. 
Therefore, we propose a Knowledge-Graph-based RulE Discovery method (KGRED), which can 
leverage the multi-dimensional semantic associations among rules to alleviate semantic drift in 
rule discovery. Specifically, to decrease misclassified rules, we design a label-aware rule gener
ation approach to attentively propagate prior knowledge from seed rules to candidate rules based 
on rule KG. To reduce wrongly-matched sentences, we present a cross-attention-based semantic 
matching mechanism to refine the semantic information of sentences while enriching that of 
rules. Moreover, we propose an inconsistency-directed active learning strategy to verify rules that 
perform inconsistently in rule generation and matching. Experiments on two public datasets 
prove that KGRED can achieve at least 5.1 % gain in F1 score compared to state-of-the-art 
methods.   

1. Introduction 

Deep learning models usually require sufficient high-quality labeled data to perform well (Sambasivan et al., 2021). However, due 
to the high cost of human annotation, collecting labeled data to train deep learning models is challenging for real-world applications, 
especially in expertise domains (Zhou et al., 2020; Zhang et al., 2021). While large language models have demonstrated significant 
performance in general natural language processing, they are not immune to “hallucination” issues, arising from limited 
domain-specific knowledge (Kojima et al., 2022). Labeling rules (rule for short) can extract typical patterns from domain corpus and 
generate labels automatically from unlabeled data, which have been widely used in weakly supervised learning (Li et al., 2021). For 
example, in Fig. 1, the rule r1 is composed of a rule body “PER, PER, stranger” and a rule label “stranger”. “PER” is the abbreviation of 
the entity category “Person”. However, rule discovery is not an easy task, since it often suffers from semantic drift (Liang et al., 2021). 
As misclassified rules and wrongly matched sentences are introduced into the iterations of rule discovery, the sentences matched by 
rules shift from the target labels to other labels. 
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Since sentences usually contain many semantically unrelated words with regard to rules, they may be assigned wrong labels. For 
example, in Fig. 1(a), s1 represents the “mother” relation. However, it is wrongly matched by r1 as the “stranger” relation. Meanwhile, 
r3 represents the “mother” relation. However, s1 contains unrelated words, such as “stranger”, the semantic similarity between r3 and 
s1 is low. Therefore, r3 cannot match s1. Moreover, these wrongly matched sentences will generate misclassified rules. For example, 
based on the wrong label of s1, r2 may be misclassified as the “stranger” relation. As the rule discovery proceeds, wrongly matched 
sentences and misclassified rules will gradually dominate the iterations, which hurt the quality of rule labeling. 

It is worth noting that rules do not exist in isolation in rule discovery, they have inherent semantic associations, which reveal the 
agreement and disagreement between the semantics of rules (Zhang & de Marneffe, 2021). On the one hand, by leveraging these 
associations, we can employ seed rules as semantic anchors (Xia et al., 2019) to impose semantic constraints on the labels of candidate 
rules. In Fig. 1(b), the label of r1 is “stranger”. Since the semantic information expressed by the body of r1 contradicts that of r2, the 
label of r2 is less related to “stranger”. In contrast, since the body of r2 entails that of r3, the label of r2 may be the same as r3. On the 
other hand, through the associations among rules, we can enrich the semantic information of rules to improve the coverage of rule 
matching. For instance, r2 can help r3 to match more related semantic information of s1. 

Previous studies have attempted to alleviate semantic drift in rule discovery. To decrease misclassified rules, Snorkel requires 
experts to write and improve rules based on labeling results (Ratner et al., 2017). Darwin generates a rule hierarchy to model the 
subsequence relations among rules and proposes traversal strategies to select candidate rules for human verification (Galhotra et al., 
2021). However, these methods rely on experts to generate a final rule set, which requires a large amount of human effort. To decrease 
wrongly matched sentences, NERO adopts a soft matching mechanism to calculate the semantic similarity of sentences and rules (Zhou 
et al., 2020). However, it represents sentences into fixed vectors regardless of rules, which may introduce wrongly matched sentences. 

Few existing works can proactively mitigate misclassified rules and wrongly matched sentences in rule discovery simultaneously. 
Therefore, we construct a rule Knowledge Graph (KG) based on multi-dimensional semantic associations among rules to alleviate 
semantic drift in rule discovery. However, it is not an easy task due to following challenges: 

(1) In rule generation, multi-dimensional semantic associations among rules may impose conflicting semantic constraints on rule 
labels. (2) In rule matching, sentences may contain semantic information unrelated to rules, resulting in wrongly matched sentences. 
(3) It is difficult to verify rules based on limited prior knowledge, which in turn impacts the quality of newly generated rules. 

In response to these challenges, we propose a Knowledge-Graph-based RulE Discovery method (KGRED) to alleviate semantic drift 
in rule discovery. Specifically, we construct a rule KG based on seed rules and candidate rules from the corpus. Then, we realize 
attentive information propagation to predict the labels of candidate rules through the label-aware rule generation approach. Next, to 
decrease the wrongly matched sentences, we present a cross-attention-based semantic matching mechanism to adaptively refine the 
semantic information of sentences while enriching that of rules. After rule generation and matching, we propose an inconsistency- 
directed active learning strategy to verify rules that perform inconsistently in rule discovery. Finally, the feedback of annotators is 
utilized to update the rule KG. 

The main contributions of this study are as follows: 

(1) To reduce misclassified rules, we design a label-aware rule generation approach to attentively propagate prior knowledge from 
seed rules to candidate rules based on rule KG. 
(2) To reduce wrongly matched sentences, we present a cross-attention-based semantic matching mechanism to refine the semantic 
information of sentences while enriching that of rules based on rule KG. 
(3) To improve the overall quality of rule discovery, we propose an inconsistency-directed active learning strategy to verify 
inconsistent rules in rule generation and matching. 

Fig. 1. Examples of rule generation and rule matching.  
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The rest of this paper is organized as follows. Section 2 provides a brief review of previous studies. Section 3 introduces the basic 
concepts and framework. Section 4 describes the proposed method. Section 5 presents experimental results. Section 6 presents the 
implications and conclusion. 

2. Related work 

2.1. Weakly supervised learning 

Obtaining sufficient high-quality labeled data is critical for training successful deep learning models and it is often a bottleneck in 
response to changing real-world applications (Sambasivan et al., 2021; Liang et al., 2022). Since human annotation is time-consuming 
and labor-intensive, weakly supervised learning methods can be applied to (semi-)automatically generate labels based on limited prior 
knowledge (Whang et al., 2023). Weakly supervised sources have been adopted as labeling functions to provide labels for unlabeled 
corpus, e.g., labeling rules (Zhou et al., 2020), knowledge bases (Feng et al., 2017), and pre-trained language models (Zhang et al., 
2022). 

One of the main challenges in weakly supervised learning is wrong labels produced by labeling functions (Zhou, 2018). Some 
studies proposed distant-supervised methods to create training data (Zhang et al., 2024). Deng et al. (2021) designed a loss function 
that can minimize the negative impacts of the noisy label and class imbalance problems in distant supervision. Ye and Luo (2020) 
proposed a general ranking-based multi-label learning framework combined with convolutional neural networks to relieve the class 
imbalance problem in distant supervision. However, external knowledge is limited and cannot satisfy the requirements of varying 
domains. Zhao et al. (2023) employed a pre-trained language model as knowledge source to derive pseudo-labels for unlabeled policy 
texts. Although the pre-trained language model can achieve comparable performance, it needs to be continuously trained by policy 
texts, which is difficult to extend to other domains. Fries et al. (2021) extracted domain knowledge by manually constructing ontology 
and performed heuristic annotation of clinical data based on the ontology. However, the construction of domain ontology still requires 
additional supervision of experts. 

2.2. Labeling rule discovery 

Rule-based data labeling methods mine frequent patterns as rules to generate labels automatically (Zhou, 2018). However, rule 
discovery is often a challenging task. Data programming paradigm relies on domain experts manually developing rules to label data 
(Ratner et al., 2016; Kartchner et al., 2020). Snorkel invites users to interactively write labeling rules according to the feedback of 
labeling results and uses generative models to resolve the conflicts between multiple rules (Ratner et al., 2017). Safranchik et al. (2020) 
introduced linked hidden Markov models to obtain labels from noisy rules. Since manually designing rules can be time-consuming, 
some works generated rules automatically from matched sentences. However, the semantic drift problem may introduce mis
classified rules and wrongly matched sentences into the iterations of rule discovery, which will affect the quality of rule labeling. 

For rule generation, Li et al. (2018) utilized positive and negative rules to match positive and negative sentences respectively. 
Varma and Ré (2018) selected high-quality labeling rules through iterations of labeling, evaluating, and feedback. Liang et al. (2021) 
used conceptual taxonomy to filter misclassified rules, which can reduce the negative effect caused by semantic drift. However, they 
still relied on prior knowledge, which cannot be scalable to other domains. Yang et al. (2018) designed a game-based crowdsourcing 
mechanism to generate rules. Darwin selects potential rules through a rule hierarchy tree based on human annotation (Galhotra et al., 
2021). 

For rule representation, knowledge graphs are able to model multiple relationships among rules (Wang et al., 2020; Rossi et al., 
2021). Wang et al. (2019) proposed an attention-based information propagation mechanism to represent the embeddings of nodes in 
KG. However, they tended to obtain semantic information of neighbor nodes and could not aggregate the common information of the 
same type of nodes. Zhong et al. (2023) generated a hierarchical structure for a graph and developed three propagation manners to 
realize hierarchical common information propagation between nodes. However, this work cannot handle multi-dimensional re
lationships in knowledge graphs. In KGRED, we design a label-aware rule generation approach to realize neighboring and common 
information propagation among rule bodies and labels in rule KG to decrease misclassified rules. 

For rule matching, NERO (Zhou et al., 2020) adopts a self-attention-based soft matching mechanism to capture similar semantic 
sentences. However, it only considers the local semantic information of sentences, which still cannot adaptively solve the unbalanced 
semantic information between rules and sentences. Instead, in KGRED, we consider the mutual influence between semantic infor
mation of rules and sentences to refine the semantic information of sentences while enriching that of rules based on rule KG. 

For rule verification, active learning strategies aim to select the most informative instances from unlabeled data, which can 
maximize the model’s performance while minimizing the annotated cost (Ren et al., 2021). Typical active learning approaches can be 
grouped into two categories: uncertainty-based and diversity-based active learning (Buchert et al., 2022). Holub et al. (2008) used 
information entropy to assess uncertainty in unlabeled samples. Liu et al. (2021) selected the unlabeled samples that can provide the 
most positive influence on model performance. Du et al. (2023) proposed a contrastive active learning method to select diversity 
samples based on the semantics and distinctiveness of the instances. Different from existing works, we detect and verify inconsistent 
rules based on the results of rule generation and matching. 
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3. Preliminaries 

3.1. Problem formulation 

Definition 1 (Labeling rule). A labeling rule r ∈ R = {r1, r2,…, ri} is composed of a rule body and a rule label as: r.b →l. Rule body 
r.b ∈ R.b = {r1.b, r2.b,…, ri.b} is a textual pattern T = [w, SUB, w, OBJ, w]. w denotes the context word sequence of subject SUB and 
object OBJ. Rule label l ∈ L = {l1, l2,…, li} indicates the labeling function of a rule. 

Definition 2 (Rule KG). Rule KG is defined as G =
{(

ni, p, nj
) ⃒
⃒ ni,nj∈ V, p ∈ P}. Each triplet describes the semantic association p 

from subject ni to object nj. V = VL ∪ VR.b denotes a node set, where VL and VR.b represent the nodes of rule bodies and labels. 
Meanwhile, P = PB− L ∪ PB− B ∪ PL− L denotes an edge set. PB− L =

{(
ni, p, nj

)⃒
⃒ni ∈ VR.b, nj ∈ VL

}
denotes the semantic associations 

among rule bodies and labels. PB− B =
{(

ni, p, nj
)⃒
⃒ni, nj ∈ VR.b

}
denotes the semantic associations among rule bodies. PL− L =

{(
ni, p,

nj
)⃒
⃒ni, nj ∈ VL

}
denotes the semantic associations among rule labels. 

Specifically, in PB− L, rule bodies and labels are connected through belong to associations. This type of association is generated based 
on the structure of rules. Meanwhile, to model the semantic agreement and disagreement among rule bodies and among rule labels, we 
classify PB− B and PL− L into two categories: entail and contradict. Specifically, entail associations indicate a subject and an object have the 
same semantic information, and the object can be inferred from the subject, i.e., ∀vi ∈ V, ∃ vj ∈ V, if vi entails vj,

then vi is True ⇒ vj is True. In contrast, contradict associations indicate a subject and an object have opposite semantic information, 
i.e., ∀vi ∈ V, ∃ vj ∈ V, if vi contradicts vj, then vi is True ⇒ vj is False. It is worth noting that other semantic associations can also be 
applied to the construction of rule KG according to requirements. 

Example 1. In Fig. 1, given <r1.b, belong to, l1>, since r1.b entails r4.b, then <r1.b, belong to, l1> can increase the likelihood of< r4.b,
belong to, l1>. Meanwhile, since r1.b contradicts r2.b, 〈r1.b, belong to, l1〉 will decrease the likelihood of <r2.b, belong to, l1>. 

Moreover, if r1.b is neutral with r5.b, 〈r1.b, belong to, l1〉 cannot influence the likelihood of <r5.b, belong to, l1>. 
Definition 3 (Rule matching). Given a rule r, a sentence s, if s.SUB = r.SUB, s.OBJ = r.OBJ and r.b is a subsequence of s, denoted as 

r.b ⊑ s, then s can be labeled by r through pattern matching. Meanwhile, if s.SUB = r.SUB, s.OBJ = r.OBJ, and matching score Score(r,
s) ≥ δ, then s can be semantically matched by r. When a rule r matches a sentence s, s can be labeled as l. 

Example 2. In Fig. 1, since r1.b ⊑ s1, r1 can match s1. Meanwhile, if the matching score Score(r3, s1) ≥ δ, r3 can semantically match 
s1. 

Research objective: Given a corpus C = {s1, s2,…,sn}, seed rules R∗, pre-defined labels L = {l1, l2,…,lm}, candidate rules are mined 
from corpus C. Then, the rule KG is constructed to model the multi-dimensional semantic associations among rules. Next, KGRED 
decreases misclassified rule and wrongly matched sentences based on rule KG to discover a final rule set R. 

3.2. Overview of KGRED 

KGRED adopts rule KG to discover rules through the iterations of core modules: rule generation, rule matching, and active learning 
(see Fig. 2). 

As shown in Algorithm 1, we first mine rules and construct rule KG based on the semantic associations between rule bodies and rule 
labels. Entities in sentences are replaced by entity types to ensure the scalability of rules. Then, we mine the longest common sub
sequences (LCS) from sentences as rule bodies (Lines 2–9). Candidate rules whose labels are not determined are mined from unlabeled 
corpus. Consequently, rule KG will be constructed based on seed rules, candidate rules, and pre-defined rule labels (Line 11). In rule 
KG, the initial belong to associations are constructed between the bodies and labels of seed rules. The entail and contradict associations 
are constructed by existing natural language inference methods (Gardner et al., 2018), which predicts the associations between texts 
through a decomposable attention model. 

Then, a label-aware rule generation approach is designed to determine the labels of candidate rules (Line 12). The prior knowledge 
can be propagated from seed rules to candidate rules through neighboring and common information propagation. Then, pattern 

Fig. 2. Overview of the KGRED framework.  

W. Hou et al.                                                                                                                                                                                                           



Information Processing and Management 61 (2024) 103816

5

matching and cross-attention-based semantic matching mechanisms are adopted to match sentences. In the semantic matching 
mechanism, the weights of words in sentences are adaptively adjusted according to rules to weaken the influence of semantically 
unrelated words. Meanwhile, the semantic information of rules is enriched based on rule KG (Line 13). Consequently, the labels of rules 
can be also predicted by matched sentences (Line 14). Then, we update rule KG using confident rules whose labels are consistent in rule 
generation and matching modules (Lines 15–17). It is worth noting that human participation is optional. If the budget b > 0, we 
conduct the inconsistency-directed active learning strategy to select potentially misclassified rules for human annotation. Finally, the 
annotation results will be fed back to the rule KG (Lines 18–21). The updated KG will be used for the next iteration of rule discovery. 

Algorithm 1 
KGRED(R,R∗,L,C,b, t∗).  

Require: Rule set R; Seed rule set R∗, Label set L; Corpus C; Budget b; Maximum number of iterations t∗

Ensure: The final rule set R, and labeled sentences St 

1: t = 0; 
2: Function Mine(C): // Mine rules. 
3: R←LCS(C); // Mine the longest common sequences. 
4: Rʹ←R; 
5: While Rʹ ∕= ∅: 
6: Rʹ←LCS(Rʹ); 
7: R←R ∪ Rʹ; 
8: Rc←Mine(C); //Mine candidate rules. 
9: While t ≤ t∗ : 
10: Gt←ConstructKG(R∗, Rc, L); // Construct rule KG. 
11: Rt←GenerateRule(Gt); // Rule generation. 
12: St←MatchSentence(Rt , Gt); //Rule matching. 
13: Rt́←Vote(St); //Verify rules based on matching results. 
14: For ri in Rt : 
15: If the label of ri is consistent in Rt and Rt́: 
16: R←R ∪ ri; //Update rule KG based on confident rules. 
17: If b > 0: 
18: R∗

t ←ActiveLearning(Rt\R); //Verify inconsistent rules. 
19: R←R ∪ R∗

t ; 
20: b = b − |R∗

t |; 
21: t = t+ 1; 
22: return R and St  

Fig. 3. Neighboring and common information propagation in rule KG.  
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4. KGRED method 

4.1. Label-aware rule generation 

Since multi-dimensional semantic associations among rules may impose conflicting semantic constraints on rule labels, we 
determine the weights of information propagation between nodes based on attention mechanism. However, using the associated 
neighbor rule bodies can only achieve neighboring information propagation. Rule labels can aggregate the common semantic infor
mation of rules that belong to the same label. Therefore, we propose a label-aware rule generation approach to realize neighboring 
information propagation and common information propagation among rule bodies and labels (Fig. 3). 

Specifically, we first obtain the embedding of the rule label as el
m. Then, we compute the embedding of a rule body eri .b as the 

average of the embeddings of sentences from which this rule body is mined. Next, neighboring information propagation and common 
information propagation is conducted based on rule KG. 

4.1.1. Attentive information propagation 
According to Definition 2, rule KG is composed of two kinds of nodes: rule bodies and rule labels. Neighboring information 

propagation focuses on propagating neighboring semantic information through the associations among rule bodies, as well as among 
rule labels, i.e., PB− B and PL− L. Meanwhile, common information propagation focuses on propagating common semantic information of 
the same types of rules through the associations among rule bodies and labels, i.e., PB− L. 

Neighboring information propagation. To distinguish the weight of each semantic association, we aggregate the semantic in

formation of neighbor rules by calculating relational attention weights. In rule body layer, as for the target rule body ri.b, Ni =
{(

ri.

b, pj, rn.b
)⃒
⃒
⃒

(
ri.b, pj, rn.b

)
∈ G

}
is the set of neighbor rule bodies of ri.b. We compute the linear combination of ri.b’s neighbor rule 

bodies: 

eNi =
∑

(ri .b,pj ,rn .b)∈Ni

θ
(

ri.b, pj, rn.b
)

ern .b (1)  

θʹ
(

ri.b, pj, rn.b
)
=

(
Wpern .b

)Ttanh
(

Wperi .b + epj

)
(2)  

θ
(

ri.b, pj, rn.b
)
=

exp
(

θʹ
(

ri.b, pj, rn.b
))

∑(
ri .b,pʹ

j ,rn .bʹ
)
∈Ni

exp
(

θʹ
(

ri.b, pʹ
j, rn.bʹ

)) (3)  

where θ
(

ri.b, pj, rn.b
)

is the relational weight to indicate how much neighboring semantic information has been propagated from 

neighbor rule bodies to target rule body through associations pj. WpϵRdʹ×d is a trainable weight matrix. Through Eq. (2), we assign high 
attention scores to neighbor rule bodies that are close to the target rule body. Through normalization processing (Eq. (3)), the as
sociation weights are obtained. Then, we aggregate the neighbor rule bodies’ representations eNi to the target rule body ri.b: 

eri .b = f
(
Wr

(
eri .b + eNi

))
(4)  

where we set the activation function f() as LeakyReLU (Dubey & Jain, 2019). Wr is a trainable weight matrix. The neighboring in
formation propagation is also conducted in the rule label layer to generate the target label’s representation el

m. For example, in Fig. 3, 
we adopt the semantic associations to propagate semantic information from r1.b and r3.b to r2.b in the rule body layer. Since r2.b entails 
r3.b, and r2.b contradicts r1.b, the weight of r3.b is higher than that of r1.b in representing the semantic information of r2.b. 

Common information propagation. To combine semantic information of the rule bodies and labels, we use a self-attention 
mechanism to aggregate common information contained in rule bodies that belong to the same labels: 

elm = f

⎛

⎝Wl

⎛

⎝elm +
∑

ri .b∈Rlm

σ(lm, ri.b)eri .b

⎞

⎠

⎞

⎠ (5)  

σ(lm, ri.b) =
exp

(
WT

c tanh
(
Beri .b

))

∑
ri .bʹ∈Rlm

exp
(
WT

c tanh
(
Beri .bʹ

)) (6)  

where σ(lm, ri.b) is a weight function to indicate how much common semantic information has been propagated from rule bodies to 
rule labels. B, Wl and Wc are learnable model parameters for integrating semantic information of rule bodies to rule labels. Then, to 
enrich the representation of rule bodies, we inject the semantic constraints between rule labels into the representation of rule bodies. 

eri .b = f
(
Wu

(
eri .b + elm

))
(7) 
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where Wu is the trainable weight matrix for the information integration of rule labels and rule bodies. For example, in Fig. 3, through 
the common information propagation, we can aggregate the semantic information of r3 b and r4 b to l2. Then, the semantic information 
of l2 can be integrated into r3 b. The common information propagation can enhance semantic similarity among rules of the same type 
and boost differentiation between rules of different types. 

Moreover, we obtain the multiple-hop semantic information from rule KG by stacking multiple rounds of propagation. Formally, in 
the t-th round of propagation, the representation of rule bodies can be defined as: 

e(t)ri .b = f
(

e(t− 1)
ri .b + e(t− 1)

Ni

)
(8) 

Finally, we choose the label with the highest similarity to the target rule body as the rule’s true label: 

lmod(ri.b) = argmax(lm∈L)
(
eri .b

)Telm (9)  

4.1.2. Optimization 
To optimize the results of rule generation, the objective functions are defined as follows: 

losstotal = lossnei + losscom (10)  

lossnei =
∑

(i,j)∈Pe

dis
(
ei, ej

)
−

∑

(i,j)∈Pc

dis(ei, en) (11)  

losscom = Max
(
0,
[
− dis

(
eri .b, elm

)
+ dis

(
eri .b, eĺm

)
+ γ

])
(12)  

where dis() is a function to compute the semantic distance between two vectors, such as Euclidean distance. lossnei aims to minimize the 
distance between nodes with entail associations (Pe) and maximize the distance between nodes with contradict associations (Pc). 
ĺm denotes the true label of ri. lm denotes other labels except for ĺm. losscom aims to minimize the distance between the rule bodies and 
their true labels. 

4.2. Cross-attention-based semantic matching 

Since sentences contain much unrelated semantic information with regard to rules, resulting the low semantic similarity between 
rules and sentences. Therefore, we design a cross-attention mechanism to adaptively weaken the influence of semantically unrelated 
words in sentences (see Fig. 4). Specifically, we obtain rule embeddings from the rule generation approach. Then, we propose sentence- 
to-rule (S-R) attention to adaptively refine the semantic information of sentences. Meanwhile, based on rule-to-rule (R-R) attention, we 
utilize the neighbor rules to enrich the semantic information of rules. 

Fig. 4. Architecture of cross-attention-based semantic matching.  
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4.2.1. S-R attention 
To adaptively refine the semantic information of sentences, the weight of each word in sentences can be measured by the semantic 

similarity between the word and the target rule: 

αk =
exp

(
tanh

(
WT

b dis
(
eri , ewk

)
+ b

))

∑
wk∈sj

exp
(
tanh

(
WT

b dis
(
eri , ewk

)
+ b

)) (13)  

where αk denotes the attention weight of the word wk in sj. Wb is an intermediate matrix and b is an offset. 
Subsequently, the attention weights of words are employed to calculate the semantic vector of sentence sj: 

esj =
∑

wk∈sj

αkewk (14) 

The initial matching score of ri and sj can be defined as the semantic similarity between them: 

Scoré
(
ri, sj

)
= Sim

(
eri , esj

)
(15)  

where we adopt the cosine similarity as Sim(). In Fig. 4, if we calculate the initial matching score of r3 and s1, the weight of each word of 
s1 depends on the semantic similarity between this word and r3. 

4.2.2. R-R attention 
In R-R attention, we adopt neighbor rules to help match additional semantic information from the sentence. Specifically, we first 

calculate the initial matching scores of neighbor rules and the sentence. Then, we aggregate the matching score of the target rules and 
neighbor rules based on the semantic associations of rule KG: 

Score
(
ri, sj

)
= hScoreʹ ( ri, sj

)
+ (1 − h)Scoreʹ ( Ni, sj

)
(16)  

Scoreʹ ( Ni, sj
)
=

∑

(i,p,n)∈Ni

λ(ri, p, rn)Scoreʹ ( rn, sj
)

(17)  

λ(ri, p, rn) =
exp(Wsern )

Ttanh
(
Wseri + ep

)

∑

(ri ,pʹ,rʹn)∈Ni
exp

(
Wserʹn

)Ttanh
(
Wseri + epʹ

) (18)  

where h denotes the contribution of the initial matching score of the neighbor rule to the final matching score. λ(ri, p, rn) is a relational 
weight to indicate the similarity of neighbor rules with ri. For example, in Fig. 4, by aggregating the initial matching scores of r1, r2 and 
r3, the final matching scores Score(r3, s1) can be calculated. 

4.2.3. Optimization 
We utilize seed rules and their matched sentences for the optimization of rule matching. If the labels of rules are the same as the 

matched sentences, we take these rules and sentences as correct matching pairs 
(
ri, sj

)
. Then, we use contradicted rules to generate 

wrong matching pairs 
(
rf , sj

)
. To guarantee the scores of correct matching pairs 

(
ri, sj

)
are higher than the wrong matching pairs 

(
rf ,

sj
)
, the training loss is given as follows: 

lossmatching = Max
(
0,

[
− Score

(
ri, sj

)
+ Score

(
rf , sj

)]
+ π

)
(19)  

where π is the range between correct and wrong matching pairs. We adopt stochastic gradient descent (Bottou, 2012) to minimize the 
learning process. 

Through pattern matching and semantic matching mechanisms, the matching results can be obtained. We assign the label with the 
most matching rules to sj. Moreover, we choose the most frequent label in the matched sentences for ri, i.e., lsen(ri). When the labels of 
rules are consistent in rule generation and matching modules, i.e., lmod(ri) = lsen(ri), we take these rules as confident rules. Then, these 
confident rules are utilized to update rule KG. 

4.3. Inconsistency-directed active learning 

Due to insufficient prior knowledge, we utilize active learning to detect misclassified rules for human verification. These mis
classified rules often have inconsistent performance in rule discovery: (1) In rule generation, the labels of rules are not consistent with 
rule bodies. Specifically, rules that belong to contradicted labels share similar semantic information in rule bodies. Meanwhile, rules 
that belong to the same or entailed labels have low semantic similarity in rule bodies. (2) In rule matching, the labels of matched 
sentences are not consistent with that of rules. To detect these inconsistent rules, we employ unsupervised contrastive learning 
techniques to calculate the semantic distance between rules, as well as between rules and sentences. Then, we design active learning 
functions to verify inconsistent rules in rule generation and matching. 

Specifically, we construct an input text set based on the bodies of rules and matched sentences. Then, we adopt data augmentation 
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strategies (Yan et al., 2021) to generate different embeddings of the same input texts as ei and ej. Then, we adopt the normalized 
temperature-scaled cross-entropy loss (Chen et al., 2020) as the contrastive learning objective to make embeddings of the same texts 
closer and embeddings of different texts further apart: 

losscon(i,j) = − log
exp

(
dis

(
ei, ej

)/
τ
)

∑2N
k=11[k∕=1]exp

(
dis

(
ei, ej

)/
τ
) (20)  

where 1 is an indicator function and τ represents a temperature parameter. Then, based on the representations of rules and sentences, 
we can model the inconsistent rules in rule generation and rule matching modules. 

Inconsistency in rule generation. By comparing rules with their neighbor rules in rule KG, we divide neighbor rules into two 
categories: Neighbor rules with contradicted labels are contradicted rules. Neighbor rules with entailed or the same labels are entailed 
rules. Then, we evaluate the inconsistency score of rules in rule generation as follows: 

RC(ri) =
Minrj∈Nent(ri)dis

(
ri, rj

)

Maxrx∈Ncon(ri)dis(ri, rx)
(21)  

where Ncon(ri) and Nent(ri) represent contradicted and entailed rules. The Min() function obtains the minimum distance between the 
target rule and entailed rules. The Max() function obtains the maximum distance between the target rule and contradicted rules. For 
example, in Fig. 1, r2 and r3 are contradicted rules for r1, and r1 is further away from r3 than r2. Meanwhile, r4 is entailed rule for r3. 
Therefore, RC(r3) = dis(r3, r4)/dis(r3, r1). 

Inconsistency in rule matching. By comparing the labels of rules and matched sentences, we can obtain the inconsistency score of 
rules in rule matching as follows: 

RM(ri) =
Minsn∈Sc(ri)dis(ri, sn)

Maxsm∈Sw(ri)dis(ri, sm)
(22)  

where Sc(ri) and Sw(ri) represent correctly and wrongly matched sentences of ri respectively. The Min() function denotes the minimum 
distance between rules and correctly matched sentences. The Max() function obtains the maximum distance between rules and 
wrongly matched sentences. For example, if r3 wrongly matched s1 and s2 and dis(r3, s1) ≥ dis(r3, s2). Meanwhile, r3 correctly matched 
s3 and s4 and dis(r3, s3) ≥ dis(r3, s4). Then, RM(r3) = dis(r3, s2)/dis(r3, s3). 

Finally, the inconsistency score of ri can be calculated as: 

ri = argmaxri∈R RC(ri)RM(ri) (23)  

where argmax() aims to select rules with the highest inconsistency score for human verification. The feedback is utilized to update rule 
KG for later rule discovery. 

5. Experiments 

In this section, we introduce the datasets and compared baselines. Then, we present the detailed experimental results and case 
study with analysis. 

5.1. Settings 

Datasets. We adopt widely-used sentence-level relation extraction datasets in our experiments: (1) SemEval 2010 Task 8 contains 
about 10,000 sentences with 19 relation types (Hendrickx et al., 2010). (2) Wiki80 contains about 56,000 sentences with 80 relation 
types (Hendrickx et al., 2010). 

Weakly supervised learning baselines. To prove the effectiveness of KGRED, we compare following methods: 

(1) Rule labeling. In this method, rules match sentences to mine new rules. This method serves as a lower bound for rule-based 
labeling methods. 
(2) Snorkel. In Snorkel, rules are designed by experts through a data programming paradigm. Then the labeled data can be ob
tained by probabilistic generative models (Ratner et al., 2017). 
(3) NERO. It requires human annotation to generate a rule set and then implements soft matching by calculating the semantic 
similarity between rules and sentences. Finally, joint learning of rules and sentences is used to train the relation extraction model 
(Zhou et al., 2020). 
(4) Darwin. It constructs a rule hierarchy tree by analyzing subsequence relations among rules. Then, it proposes three traversal 
strategies to select potential rules for human verification. Through the feedback of experts, the rule hierarchy tree can be updated 
for later traversal (Galhotra et al., 2021). 

Variants of KGRED. To evaluate the key modules of KGRED, we design following ablation experiments: (1) w/o rule generation 
(w/o RC). This method removes the label-aware rule generation approach. Then, the labels of rules are determined by matched 
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sentences. (2) w/o semantic matching (w/o SM). This method removes the cross-attention-based semantic matching module and 
only performs pattern matching to match sentences. (3) w/o active learning (w/o AL). It removes the inconsistency-directed active 
learning module. 

Rule generation baselines. We evaluate the label-aware rule generation approach of KGRED with following methods: (1) KGAT. 
This method realizes attention-based information propagation in KG. It calculates the weights of neighbor nodes based on the relations 
of target node and neighbor nodes (Wang et al., 2019). In rule generation, we run the KGAT method on the rule KG and exploit the 
semantic associations among rule bodies for information propagation. (2) Hierarchical passing. This method proposes a hierarchical 
information propagation method to make the node representation learning process aware of long-range interactive information (Zhong 
et al., 2023). In rule generation, we conduct this method based on the semantic associations among rule bodies and labels. 

Rule matching baselines. We compare the cross-attention-based semantic matching mechanism of KGRED with the following rule 
matching methods: (1) Pattern matching. Pattern matching is to determine whether the patterns of rules and sentences are consistent. 
In this experiment, we follow the common practice of converting rules to regular expressions to match sentences. (2) Soft matching. 
Soft rule matcher of NERO obtains sentence and rule embeddings based on self-attention mechanism (Zhou et al., 2020). 

Active learning baselines. We evaluate inconsistency-directed active learning strategy (CO_AL) with other methods: (1) Un
certainty-based active learning (UC_AL). It utilizes entropy to measure the uncertainty of unlabeled data (Holub et al., 2008). (2) 
Contrastive active learning (CL_AL). It uses a contrastive learning method to calculate the distinctive and similar scores of unlabeled 
data (Du et al., 2023). 

Implementation. We implement baselines from scratch using Tensorflow 1.12.0 except for those that have released their codes. 
Pre-trained BERT model is utilized to initialize word embeddings. Specifically, we use 5 % labeled data of datasets to generate seed 
rules. The length of rule body is set to be longer than 2. Then, we conduct 8 iterations of rule discovery for each dataset. In each 
iteration, the top 5 % of inconsistent rules are verified until human resource budget is used up. In human verification, each selected 
rule is verified by three annotators. For a fair comparison, we conduct baselines based on the same human resource and labeled 
sentences as KGRED. Following the common practice, precision, recall, and F1 score (Zhou et al., 2020; Galhotra et al., 2021) are 
adopted to evaluate KGRED and compared baselines. Five training and testing runs are conducted based on different random seed 
rules. Then, the mean and standard deviation of the evaluation metrics are presented. 

5.2. Experimental results 

Performance of baselines. Table 1 shows the performance of KGRED and the baselines on the SemEval and Wiki80 datasets. 
Compared to other methods, rule labeling method achieves lower F1 score. Since rule labeling method lacks a verification strategy for 
generated rules and labeled sentences during iterations, it is difficult to prevent semantic drift. Instead, KGRED outperforms Snorkel by 
6.7 % F1 score on the SemEval dataset and 10.3 % F1 score on the Wiki80 dataset. This is because Snorkel relies on experts to write 
rules. Due to the limited domain knowledge of experts, some important rules remain to be discovered. Meanwhile, KGRED outperforms 
NERO by 5.5 % F1 score on the SemEval dataset and 5.1 % F1 score on the Wiki80 dataset. NERO utilizes a self-attention mechanism to 
calculate the semantic similarity of sentences and rules, which can improve the coverage of rules. However, it ignores the mutual 
influence between semantic information of rules and sentences, which may generate errors in rule matching. Moreover, Darwin has a 
higher recall score than KGRED, but a lower precision score on the SemEval dataset. Since Darwin uses subsequence relations among 
rules to generate rules, it tends to choose rules with a high degree of generalization, resulting in a higher recall score for data 
annotation. However, Darwin does not consider the semantic information of rules and sentences in rule matching, so it cannot avoid 
incorrectly matched sentences. It is worth noting that KGRED can achieve a better balance between precision and recall scores than 
other methods across datasets. This is because KGRED generates rules from the entire corpus to ensure the coverage of the rule set. 
Moreover, the multi-dimensional semantic associations among rules are used to reduce errors in rule labeling. 

Furthermore, KGRED outperforms its variants. Specifically, w/o RC uses sentences matched by rules to determine rule labels. 
Therefore, it cannot reduce misclassified rules that are generated from wrongly matched sentences in rule discovery. Meanwhile, w/o 
SM ignores the semantic similarity between rules and sentences, which may introduce wrongly matched sentences in rule discovery. In 
w/o AL, misclassified rules cannot be verified by human verification, resulting in lower F1 score than KGRED. 

Furthermore, we analyze the intermediate results of rule discovery. In Fig. 5, the F1 scores of rule generation and rule matching 
fluctuate in some rounds. Due to the limited number of seed rules, rule generation is prone to errors. These errors may affect rule 

Table 1 
Results of compared baselines.  

Method  SemEval   Wiki80  
Precision Recall F1 Precision Recall F1 

Rule labeling 22.7 ± 5.1 15.6 ± 4.0 17.4 ± 1.1 28.6 ± 6.7 38.0 ± 6.6 32.5 ± 6.7 
Snorkel 58.6 ± 3.0 57.5 ± 2.7 58.0 ± 0.1 56.6 ± 3.2 57.1 ± 5.6 56.8 ± 4.4 
NERO 61.0 ± 5.1 58.0 ± 2.2 59.2 ± 1.3 61.1 ± 4.0 63.1 ± 6.8 62.0 ± 5.3 
Darwin 28.4 ± 0.2 74.0 ± 13.1 41.0 ± 0.8 41.6 ± 2.1 55.8 ± 4.8 44.1 ± 5.1 
w/o RC 30.5 ± 5.8 34.1 ± 2.0 31.7 ± 2.4 35.5 ± 0.5 40.4 ± 2.1 37.5 ± 1.9 
w/o SM 49.8 ± 5.8 51.7 ± 6.3 50.7 ± 6.1 35.3 ± 1.9 41.9 ± 4.1 38.3 ± 1.1 
w/o AL 38.0 ± 13.3 39.2 ± 14.6 37.8 ± 13.0 33.0 ± 0.2 42.8 ± 0.4 37.2 ± 1.7 
KGRED 63.0 ± 2.4 66.7 ± 5.7 64.7 ± 3.9 64.3 ± 7.8 70.5 ± 1.8 67.1 ± 5.1  
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Fig. 5. Iteration experiments of KGRED.  
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Fig. 6. Comparison of different amounts of human annotation. (a-c) for SemEval. (d-e) for Wiki80.  
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Fig. 7. Comparison of variants of KGRED.  
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matching in the early stages of rule discovery. Through the inconsistency-directed active learning method, the previously misclassified 
rules can be verified to improve the quality of rule discovery. Moreover, Fig. 5(c) shows the cumulative amount of human annotation in 
iterations. In the 4–7th iterations, the amount of human annotation decreases gradually. As the quality of rule generation and rule 
matching improves in rule discovery, the inconsistent rules decrease. 

Effect of human annotation on rule discovery. Fig. 6 shows the changes in Darwin and KGRED when varying the amount of 
human annotation. When the amount of human annotation is zero, KGRED achieves 26 % higher F1 score on the SemEval dataset and 
28 % higher F1 score on the Wiki80 dataset compared to Darwin. It proves the effectiveness of KGRED in rule discovery without human 
annotation. As the amount of human annotation increases, although Darwin has achieved a recall score comparable to or even better 
than KGRED, its precision score is lower than KGRED. The reason is that Darwin tends to choose rules that can match more positive 
samples while ignoring the semantic information of the rules. Rules may contain some common words, resulting in a high recall score 
but not relevant to the target task. Compared with zero human annotation, when the amount of human annotation reaches 100, the F1 
score of KGRED has been improved by at least 21 %. KGRED adopts semantic associations among rules to more accurately represent the 
semantics of rules, helping to achieve higher quality rules with limited labor costs. 

Performance of variants of KGRED. Fig. 7 demonstrates the performance of KGRED’s variants on the SemEval dataset in iter
ations. Variants of KGRED are affected by semantic drift and show fluctuations. Specifically, the F1 score of w/o RC method shows a 
downward trend. It reflects the effectiveness of the rule generation model in predicting correct labels for generated rules. For the w/o 
AL method, due to the lack of an active learning strategy, the rule iteration process is easily affected by noise, resulting in large 
fluctuations in F1 score. For the w/o SM method, in the fifth to sixth iterations, the recall score of the w/o SM has a higher error than 
other methods. Since rule matching of the w/o SM has limited coverage and is not learnable, some wrongly matched sentences are 
introduced. 

Effect of different rule generation approaches. Table 2 summarizes the performances of different rule generation approaches. 
Specifically, KGRED outperforms KGAT by 27 % F1 score. KGAT utilizes multiple semantic associations in the rule KG to realize the 
propagation of semantic information between neighbor nodes. However, it is difficult to aggregate semantic association information, 
which is shared in the same type of rules. Meanwhile, KGRED outperforms the hierarchical passing method by 11.4 % F1 score. The 
hierarchical passing method can utilize the belong to associations among rule bodies and labels to realize the hierarchical semantic 
information propagation. However, it is unable to adopt the entail and contradict associations to realize relation-weighted information 
propagation among rule bodies and labels. Compared to other approaches, KGRED propagates neighboring semantic information and 
common semantic information of rules simultaneously. 

Effect of different rule matching mechanisms. Table 3 summarizes the experimental results of different rule matching mech
anisms. Pattern matching mechanism examines the pattern of sentences to determine sentences’ labels. However, it ignores the se
mantic information of the sentence, which achieves lower precision score than KGRED. Compared to pattern matching, the soft 
matching mechanism of NERO can achieve higher recall score. However, wrongly matched sentences will be introduced because NERO 
focuses on the local semantic information of sentences and ignores the mutual influence between rules and sentences. In contrast, 
cross-attention-based semantic matching mechanism can adaptively calculate the weights of words in sentences according to rules 
while enriching the semantic information of rules based on rule KG. Through this mechanism, the unbalanced semantic information 
between sentences and rules can be mitigated, thereby improving the F1 score of rule matching. 

Effect of different active learning strategies. Fig. 8 summarizes the performances of different active learning strategies. UC_AL 
performs weaker than other methods. Since UC_AL utilizes the confidence of the rule generation model to select samples, it is easy to be 
influenced by model’s overconfident predictions. Meanwhile, there are large fluctuations in the F1 score of CL_AL. This method uses a 
contrastive learning method to select related and informative samples to increase labeled samples’ diversity. However, it cannot 
evaluate the possibility that a rule label is wrong in rule discovery. Instead, inconsistency-directed active learning method compre
hensively considers the entire process of rule discovery to find misclassified rules in rule generation and rule matching for human 
verification, which can effectively prevent noise propagation in rule discovery. 

Effect of different loss functions in rule generation. As shown in Table 4, all two loss functions contribute to the final per
formance of rule generation, while lossnei helps the most. When removing lossnei, the F1 score drops 15 %. It proves the effectiveness of 
propagating neighboring semantic information based on multi-dimensional semantic associations among rule bodies, as well as among 
rule labels. When removing losscon, the F1 score drops 5.3 %, which shows the effectiveness of propagating common semantic in
formation among rule bodies and labels. 

5.3. Case study 

By comparing the discovered rules and matched sentences (Table 5), we can obtain an intuitive understanding of KGRED. The rules 
discovered by Snorkel and NERO tend to have fixed patterns. Both Snorkel and NERO rely on experts to discover rules. Since experts 

Table 2 
Comparison of different rule generation approaches.  

Methods Precision Recall F1 

KGAT 40.8 ± 5.6 40.9 ± 2.3 38.2 ± 0.7 
Hierarchical passing 51.2 ± 2.1 57.3 ± 5.9 53.8 ± 1.4 
Label-aware rule generation (KGRED) 65.8 ± 0.4 63.1 ± 0.7 65.2 ± 0.5  
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are difficult to cover the entire corpus, some rules remain to be discovered. Meanwhile, Darwin discovers many redundant rules, since 
it utilizes subsequences of labeled sentences as rules. Compared to the baselines, the rules discovered by KGRED have greater diversity 
in pattern and semantics. KGRED considers the entire corpus comprehensively to discover rules. Rule labels are effectively predicted 
based on the multi-dimensional semantic associations among rules. Therefore, KGRED can discover rules that cannot be discovered by 
other methods. As for True Positive (TP) sentences, NERO matches more TP sentences than Snorkel and Darwin. This is because NERO 
adopts soft matching mechanism to extend the coverage of rules. However, NERO matches fewer TP sentences than KGRED. The 
diverse rules discovered by KGRED can match related sentences comprehensively. Moreover, KGRED leverages cross-attention-aware 
semantic matching mechanism to reduce wrongly matched sentences. 

Rule generation based on rule KG. Fig. 9 shows the processing of determining the labels of rules based on rule KG on the SemEval 
dataset. In Fig. 9, since r5.b entails r1.b, r1 is related to the “Product_producer” label. Since r1.b contradicts r3.b, r4.b and r6.b, the label of 
r1 is less related with “Entity_origin” or “Entity_destination”. Finally, according to the label-aware rule generation approach, the label 
of r1 is determined as “Product_producer”. Through label-aware rule generation approach, the multi-dimensional semantic associa
tions among rules help to predict the labels of rules while providing interpretability for rule generation. 

Rule matching based on rule KG. Fig. 10 shows the processing of semantic matching based on rule KG on the SemEval dataset. In 
Fig. 10, s8 contains other semantically unrelated words according to r3 and r7. If calculating the semantic similarity between r3 and s8, 
or between r7 and s8 in isolation, s8 is difficult to be semantically matched. According to the entail association between the bodies of r3 
and r7 in the rule KG, the semantic information of r7 can be aggregated into r3, and the semantic matching of r3 and s8 can be realized. It 
demonstrates that cross-attention-based semantic matching mechanism can adaptively adjust the weights of the words in the sentence 
according to rules while enriching the semantic information of rules based on rule KG. 

6. Implications and conclusion 

6.1. Implications 

This study has the following theoretical implications. First, we model the multi-dimensional semantic associations among rules to 
reveal the semantic constraints among rules. Second, different from previous works that considered rules in isolation in rule discovery, 
we propose a new way to discover rules based on rule KG. 

In terms of practical implications, this study investigates the possibility of adopting rule KG to address semantic drift in rule 
discovery. Previous rule discovery methods cannot decrease misclassified rules and wrongly matched sentences simultaneously in rule 
discovery. Instead, our proposed method utilizes the multi-dimensional semantic associations among rules to realize the joint opti
mization of rule generation and rule matching. Specifically, the representation of rules in rule generation modules can be utilized in 
semantic matching. Meanwhile, inconsistent rules are selected and verified by evaluating the performance of rules in rule generation 
and matching. Moreover, as KGRED requires limited prior knowledge, it can be extended to areas of expertise. 

6.2. Conclusion 

In conclusion, we construct rule KG to model the multi-dimensional semantic associations among rules and utilize this rule KG to 
generate high-quality rules to alleviate semantic drift in rule discovery. The experimental results on two public datasets show that 
KGRED can achieve at least 5.1 % gain in F1 score over the baselines. Specifically, to decrease misclassified rules, we design a label- 
aware rule generation approach to convert the semantic constraints among rules into attentive information propagation. To reduce the 
wrongly matched sentences, we present a cross-attention-based semantic matching mechanism to adaptively calculate the semantic 
similarity of rules and sentences based on the mutual influence between them. Moreover, we use an inconsistency-directed active 
learning strategy to verify rules in rule discovery. Moreover, the case study proves that KGRED can discover a comprehensive rule set 
and provide interpretability for rule discovery. 

Regarding shortcomings of the proposed method, since the rule KG is updated in each iteration, rule generation and matching 
models need to be re-trained, which may increase training costs. In the future, we will explore how to incrementally train and optimize 
these models. Moreover, we will explore the potential of combining rule discovery and large language models in data labeling. By 
injecting high-quality domain knowledge automatically discovered by KGRED into large language models, the scalability of data 
labeling can be improved. 
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Table 3 
Comparison of different rule matching mechanisms.  

Methods Precision Recall F1 

Pattern matching 57.4 ± 1.7 69.5 ± 4.5 62.8 ± 0.9 
Soft matching 42.8 ± 8.8 74.1 ± 5.7 53.2 ± 5.5 
Cross-attention-based rule matching (KGRED) 63.0 ± 2.4 66.7 ± 5.7 64.7 ± 3.9  
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Fig. 8. Comparison of different active learning strategies.  
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Table 4 
Results of optimization objectives in rule generation.  

Objective Precision Recall F1 

w/o lossnei 54.8 ± 1.6 53.7 ± 2.1 54.2 ± 1.9 
w/o losscon 64.0 ± 1.9 63.7 ± 2.2 63.9 ± 2.0 
losstotal 65.8 ± 0.4 73.1 ± 0.7 62.9 ± 0.5  

Table 5 
Comparison of discovered rules and matched sentences.  

Method Discovered rules # of TP sentences 

Snorkel def P_P(x): return Product_producer if “made by” in x else Abstain 4089 
def P_P(x): return Product_producer if “founded by” in x else Abstain 
def E_O(x): return Entity_origin if “made from” in x else Abstain 
def E_O(x): return Entity_origin if “release from” in x else Abstain 
def E_D(x): return Entity_destination if “into my” in x else Abstain 
def E_D(x): return Entity_destination if “into the” in x else Abstain 

NERO “SUBJ-O, produced by the, OBJ-O”->Product_producer 4089 
“SUBJ-O, produces, OBJ-O”->Product_producer 
“SUBJ-O, from past, OBJ-O”->Entity_origin 
“SUBJ-O, from outer, OBJ-O”->Entity_origin 
“SUBJ-O, into my, OBJ-O”->Entity_destination 
“SUBJ-O, into their, OBJ-O”->Entity_destination 

Darwin “SUBJ-O, produced, OBJ-O” (Product_producer) 2395 
“SUBJ-O, produced by, OBJ-O” (Product_producer) 
“SUBJ-O, went away from, OBJ-O” (Entity_origin) 
“SUBJ-O, went away from the, OBJ-O” (Entity_origin) 
“SUBJ-O, into, OBJ-O” (Entity_destination) 
“SUBJ-O, into my, OBJ-O” (Entity_destination) 

KGRED {e1, produce, e2}->Product_producer 4322 
{e1, e2, construct}->Product_producer 
{e1, run away from, e2}->Entity_origin 
{release, e1, e2}->Entity_origin 
{e1, inside, e2}->Entity_destination 
{e1, move into, e2}->Entity_destination  

Fig. 9. Cases of rule generation.  

Fig. 10. Cases of semantic matching.  
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